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Hybrid organic-inorganic coordination assembly, which may
incorporate functionality from both inorganic and organic compo-
nents, is currently an active research area.1-3 However, despite
impressive progress in the past decade, there remain a number of
challenges, two of which are highlighted here. One is the control
of the dimensionality in inorganic connectivity.2-5 Inorganic
components in the majority of coordination polymers are isolated
metal cations or clusters, and only a very limited number of 3-D
inorganic connectivity (within organic-inorganic hybrids) are
known.3,4 The 3-D inorganic connectivity is desirable for properties
resulting from cooperative phenomenon such as magnetism3c and
conductivity.2d

The second challenge relates to homochiral open-framework
materials that have potential enantioselective applications.6-8 While
the crystallization of chiral crystals from achiral precursors is not
uncommon, the bulk sample tends to be a racemate, except in some
rare cases when a particular chiral form is preferentially formed.7

For enantioselective applications, it is desirable to develop new
synthetic procedures to produce enantiopure open-framework
materials.

In known 3-D homochiral crystalline inorganic-organic hybrids,
enantiopure ligands generally serve as structural building units to
cross-link inorganic units into covalent frameworks, and chiral
ligands are essential for the 3-D framework connectivity. The
framework dimensionality in terms of the covalent connectivity
would generally be lowered (to two-, one-, or zero-dimension)
without cross-linking chiral ligands.

Here we present two isostructural homochiral materials (1 and
2) in which homochiral features serve as decoration on 3-D metal-
oxygen frameworks. The most interesting feature is that the 1-D
homochiral chains can be considered not as a part of the 3-D
framework but as decorative ligands to strengthen the existing 3-D
metal-oxygen framework. Compounds1 and 2 are also among
rare inorganic-organic hybrids that contains 3-D inorganic con-
nectivity (here, 3-D Mn-O or Mg-O network). It is worth noting
that the 3-D inorganic connectivity among homochiral inorganic-
organic hybrids is rare. Some metal carboxylates with 3-D
M-O-M connectivity are known, but they are not homochiral.2c,3a,5a

Compounds1 and 2 are among a total of five homochiral
framework materials prepared in this work. These five compounds
possess homochiral connectivity (i.e., the connectivity between
enantiopure ligands and metal centers) in one-, two-, and three-
dimensions. Such diverse homochiral features highlight the versatil-
ity of the synthetic system reported here. While1, 3, 4, and5 are
based on the magnetic Mn2+ cations, we also prepared2 to
demonstrate that the synthetic chemistry reported here can be
extended to other metal species such as Mg2+.

Homochiral materials reported here are based onD-camphoric
acid (D-H2Cam) (Table 1). Figure 1a shows an unusual [Mn3-
(HCOO)4]n

2n+ 3-D framework in1 with 3-D Mn-O-Mn con-

nectivity and open honeycomb channels. The organic chains based
on enantiopureD-Cam ligands are attached to the wall of the
channels, generating an unprecedented framework with 3-D inor-
ganic M-O connectivity and decorative 1-D chiral chains (Figure
1a-e). Each Mn2+ site in1 has distorted octahedral geometry. There
are three independent Mn2+ ions. Mn1 and Mn2 are connected by
HCOO- ligands to form a 32 helix along thec-axis. Each 32 helix
is connected to three adjacent helices by Mn3. Such connectivity
results in the formation of the [Mn3(HCOO)4]n 3-D framework with
open channels along thec-axis (Figure 1a). The diameter of the
cylindrical channel is about 14 Å.

The simplification of the 3-D network in1 by connecting all
the Mn2+ sites gives a distorted eta net (or (8,3)-a net)9 where the
Mn1 centers behave as 3-connected nodes (Figure 1b). In this net,
the linkage between the 32 helices with the same handedness gives
rise to a 3-D network. All four independent HCOO- ligands use
µ2-O atoms to bridge Mn2+ ions, resulting in a 3-D Mn-O-Mn
framework. Thermal analysis results show compound1 has
relatively high stability with no weight loss under 400°C. Magnetic
susceptibility measurements reveal dominant antiferromagnetic
behavior, and the magnetic data above 25 K can be fitted to the
Curie-Weiss law withC ) 11.18 cm3 K mol-1 andθ ) -61.13 K.

The large space of each hexagonal channel accommodates three
columns of theD-Cam ligands with all chiral C centers of theD-Cam
ligands directed toward the center of the channel. Such exposed
chirality centers are particularly desirable for chiral recognition,
but unfortunately, no additional solvent-accessible space is present
within the honeycomb channels because channels are already filled
with columns of homochiral ligands.

By employing different solvents, three other homochiral com-
pounds3-5 were obtained. Unlike compound1 with 1-D homo-
chiral connectivity (attached to 3-D M-O-M framework), com-
pounds 3 and 4 exhibit 2-D homochiral connectivity while
compound5 has 3-D homochiral connectivity. Then-D homochiral
connectivity means that metal cations or metal clusters are joined
together by enantiopure ligands inn-dimensions. The dimensionality
of homochiral connectivity may be equal to or lower than the overall
framework dimensionality because of the additional cross-linking
by achiral ligands.

It can be useful to indicate the dimensionality of metal/chiral
ligand connectivity and the dimensionality of metal/achiral ligand
connectivity using the CnAm scheme first proposed here, where C
and A represent chiral and achiral connectivity, respectively, and
n andm represent dimensionality of chiral and achiral connectivity
(Table 1). The CnAm scheme is similar to the previously reported
InOm scheme that shows inorganic and organic connectivity in
inorganic-organic hybrids.2a

Compound3 has a homochiral 2-D layered structure with
dinuclear Mn units bridged by theD-Cam ligands and belongs to
the C2A0-type structure (Figure 2a). Each Mn(II) site in3 has square
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pyramidal geometry, and the Mn dimers are bridged by four
bidentate carboxylate groups from fourD-Cam ligands into a paddle-
wheel. The DMA molecule affords one oxygen atom to complete
the five-coordinate geometry of the Mn(II) center.

Compound4 consists of homochiral layers linked by 1-D achiral
chains and therefore has a C2A1 3-D framework (Figure 2b). The
D-Cam ligands act asµ4-linkers and connect the trinuclear Mn units
to form a homochiral (4,4) layer parallel to thebcplane. Both DMF
and HCOO- ligands affordµ2-O atoms to connect Mn(II) centers
to form a 1-D Mn-O-Mn chain along thea-axis. The homochiral
layer and achiral Mn-O-Mn chain share the common trinuclear
Mn units resulting in a 3-D C2A1 homochiral framework (n + m
) 3).

Compound5 is formed between Mn2+ ions andD-Cam ligands
and has the 3-D homochiral connectivity (C3A0) (Figure 2c). It

consists of Mn2+ chains bridged by homochiralD-Cam ligands.
There are two independent Mn2+ centers, and both of them are
coordinated by five carboxylate oxygen atoms from fourD-Cam
ligands in a distorted square pyramidal geometry. Mn1 and Mn2
atoms are bridged by two carboxylate groups from two independent
D-Cam ligands to form a chain with corner-sharing [MnO5] square
pyramids. Each carboxylate-bridged Mn chain is further linked to
four neighboring chains byD-Cam ligands, to generate a 3-D
homochiral framework. Such framework can be described as the
PtS net by considering Mn2+ as tetrahedral nodes andD-Cam as
planar 4-connected nodes.

In conclusion, we have synthesized five framework solids that
exhibit homochiral connectivity in one-, two-, and three-dimensions.
The overall framework connectivity of these materials ranges from
two- to three-dimensions by also considering achiral connectivity.
Compounds1 and2 are unusual because of the presence of 3-D
inorganic metal-oxygen frameworks coupled with the decoration
of their honeycomb channels by columns of homochiral chains.
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Table 1. A Summary of Crystal Data and Refinement Resultsa

formula space group a (Å) b (Å) c (Å) â (°) R (F) Flack parameter CnAm type

1 [Mn3(HCOO)4(D-Cam)]n P32 15.128(1) 15.128(1) 7.716(1) 90 0.0662 0.09(5) C1A3

2 [Mg3(HCOO)4(D-Cam)]n P32 14.872(1) 14.872(1) 7.333(1) 90 0.0751 0.02(7) C1A3

3 [Mn2(D-Cam)2(DMA)2]n P21 9.670(1) 13.269(1) 13.274(1) 108.63(1) 0.0847 0.2(3) C2A0

4 [Mn3(HCOO)2(D-Cam)2(DMF)2]n P21 8.872(1) 13.708(1) 14.441(1) 97.75(1) 0.0646 0.01 (1) C2A1

5 [Mn2(D-Cam)2]n P21 6.868(1) 12.566(2) 12.782(2) 103.46(1) 0.0389 -0.04(2) C3A0

a D-H2Cam) D-camphoric acid; DMF) N,N′-dimethylformamide; DMA) N,N′-dimethylacetamide; CCDC-655527-655531 (1-5).

Figure 1. (a) The [Mn3(HCOO)4]n
2n+ 3-D framework with 3-D Mn-O-

Mn connectivity and open channels along thec-axis. (b) Topological
representation of the eta net in1. (c) The D-Cam ligands link trinuclear
Mn(II) centers into the 1-D homochiral chain in1. (d) The 3-D I3O1 (or
C1A3) framework of 1, showing the 3-D Mn-O-Mn connectivity
(polyhedron) and the attached homochiral chains. (e) Schematic representa-
tion of the honeycomb-like 3-D frameworks with attached 1-D homochiral
chains.

Figure 2. (a) The 2-D homochiral layer in3. (b) The 3-D C2A1 framework
of 4. (c) The 3-D C3A0 framework of5.
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